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Key Points: 

● A machine learning precipitation classification model is developed for GOES-16 satellite 

observations and numerical weather predictions. 

● Promising results in identifying the occurrence/non-occurrence with accuracy 93% 

● Hail and Warm Stratiform types have high detection scores greater than 70% 

● Challenges exists in separating Convective types 
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Abstract 

Precipitation is one of the most important components of the global water and energy cycles, which 

together regulate the climate system. Future changes in precipitation patterns related to climate 

change are likely to bear the largest impacts on society. The new generation of geostationary Earth 

orbit (GEO) satellites provide high-resolution observations and opportunities to improve our 

understanding of precipitation processes. This study contributes to improved precipitation 

characterization and retrievals from space by identifying precipitation types (e.g., convective, 

stratiform) with multi-spectral observations from the Advanced Baseline Imager (ABI) sensor 

onboard the GOES-16 satellite. A machine learning-based classification model is developed by 

deriving a comprehensive set of features using five ABI channels and numerical weather prediction 

observations, and trained with the Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) 

system used as a benchmark. The developed prognostic model shows skillful performance in 

identifying the occurrence/non-occurrence of precipitation (accuracy of 97%; Kappa coefficient 

of 0.9) and precipitation processes, with an overall classification accuracy of 76% and Kappa 

coefficient of 0.56.  Challenges exist in separating convective and tropical from other precipitation 

types. It is suggested to utilize probabilities instead of deterministically separating precipitation 

types especially in regions with uncertain classifications.  

Keywords: GOES-16, Numerical Weather Prediction, Precipitation, Machine Learning, 

Classification, Geostationary Satellites  
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1. Introduction 

With enhanced observation capabilities, the new generation of geostationary (GEO) 

satellites provides an opportunity to improve the observation and estimation from space of a major 

component of the water and energy cycles - precipitation. NOAA’s Advanced Baseline Imager 

(ABI) sensor onboard the Geostationary Operational Environmental Satellites (GOES-R Series) 

provides three times more spectral channels, four times the resolution, and five times faster 

scanning across North and South America when compared to its predecessor imager onboard 

previous-generation GOES (Schmit et al., 2017). Likewise, other GEO sensors with more than 10 

spectral channels such as the Advanced Himawari Imager (AHI) onboard Himawari 8-9, the 

Advanced Geosynchronous Radiation Imager (AGRI) onboard FY-4A, the Advanced 

Meteorological Imager (AMI) onboard GEO-KOMPSAT-2A, together with ABI (GOES-R) 

provide global coverage at high spatial and  temporal resolution. An overarching challenge is now 

to effectively utilize and explore this huge information gain for science and applications. 

Specifically, the improved temporal, spatial and spectral resolution of precipitation observations 

support our understanding of highly spatially and temporally varying precipitation processes at 

mesoscale and thereby improving global precipitation retrievals.  

Retrieving surface precipitation from GEO observations is challenging because the Visible 

(VIS)/Infrared (IR) regions of the electromagnetic spectrum provide mainly cloud-top related 

information. The relation between cloud top brightness temperatures and surface precipitation 

rates varies with precipitation types (e.g., convective versus stratiform precipitation) and the 

vertical distribution of their processes (Vicente et al., 1998). Therefore, most Quantitative 

Precipitation Estimation (QPE) algorithms with active or passive remote-sensing instruments 

initially classify the observed precipitation into different categories before applying separate 



 

observations-to-surface rate relations to improve the retrieval accuracy. This is an active research 

domain (e.g. active microwave observations: Le and Chandrasekar, 2012, 2021; passive 

microwave observations: Petković et al., 2019 ; VIS/IR: Grams et al., 2016; Thies et al., 2008). 

Challenges in precipitation quantification from GEO sensors arise at the initial stage of detecting 

precipitation processes (Upadhyaya et al., 2020). 

Most QPE operational algorithms use part of the available channels from ABI. The Self-

Calibrating Multivariate Precipitation Retrieval (SCaMPR; Kuligowski 2002; Kuligowski et al. 

2016) uses 5 out of the 16 ABI channels, and the Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks - Cloud Classification System (PERSIANN-CCS; 

Hong et al., 2004) only uses one channel (i.e., 11.2μm).  While spatial features derived from these 

channels (9 features from PERSIANN-CCS and 2 for SCaMPR) provide additional information, 

several recent studies showed that more features can be derived to aid in improved precipitation 

detection, classification and quantification (Giannakos and Feidas, 2013; Thebbi and Haddad, 

2016; Thies et al., 2008; Upadhyaya and Ramsankaran, 2014). As a result, the information derived 

from new channels provided by the recent generation of GEO sensors such as ABI is still 

underexplored, while challenges remain in detecting and quantifying precipitation types such as 

non-precipitating cold cirrus clouds or warm/shallow precipitation from space-based platforms (So 

and Shin, 2018). For the first time to our knowledge, a framework is designed to consistently and 

systematically analyse satellite-based indices for precipitation detection and classification. 

An endemic limitation is the limited availability of standard reference precipitation 

typologies, which leads most operational algorithms to utilize unsupervised techniques. For 

example, SCaMPR and PERSIANN-CCS utilize techniques solely based on the ABI data that do 



 

not explicitly identify precipitation systems or types (Grams et al., 2016). Their outputs allow for 

limited physical interpretation of precipitation types observed by ABI.  

Reference data play a key role in the precipitation classification or type identification 

problem to interpret and extract physical information observed by GEO sensors. Most of the recent 

research studies either use expert classified images as reference (Tian et al., 1999; Saitwal et al., 

2003) which limits the volume of data used,  or gauge-based surface precipitation rates (Giannakos 

and Feidas, 2013; Thebbi and Haddad, 2016) to separate convective and stratiform precipitation 

based on precipitation intensity and duration rather than on the basis of physical processes. Active 

remote sensors (i.e., radars) from ground and space provide more physical depiction of 

precipitation processes and thus provide more accurate classifications as they elucidate cloud 

microphysical properties. Only a few studies have attempted to utilize this information to guide 

the training of classification models and understand the information from GEO observations 

(Grams et al, 2016; So and Shin, 2018; Thies et al., 2008). However, these studies have been 

carried out with few spectral channels only and with limited use of derived features or cloud-top 

properties.  

The overall objective of this work is to effectively utilize GOES-16 ABI observations to 

identify precipitation types as seen by ground-based radars in order to improve precipitation 

retrievals. The research questions we attempt to answer are: How much information on 

precipitation processes or types as observed from ground radars is contained in ABI cloud-top 

observations? Can they be used to discriminate the precipitation processes or types identified with 

active sensors? How much do modeled environmental conditions complement the ABI 

observations? 



 

In this study, we propose to use five day-night channels from GOES-16 ABI observations 

(as in SCaMPR in order to facilitate direct comparison with it) to develop a comprehensive 

machine learning model for precipitation type classification. A comprehensive set of features are 

derived and tested, many of which are derived for the first time.  Information about low-level 

environmental conditions complement the ABI cloud-top information and are derived using 

Numerical Weather Prediction (NWP) model-based environmental features. The reference used is 

the set of surface precipitation types provided by the Ground-Validation Multi-Radar/Multi-Sensor 

(GV-MRMS) system (Kirstetter et al. 2018) across the conterminous United States (CONUS).   

Following the introduction, Section 2 introduces data and methods with detailed discussion 

on newly derived indices. Section 3 reports the results and analyzes the experiments carried out, 

and the last section concludes and summarizes takeaway points from this work.  

 

2. Data and Methods 

2.1. GEO Satellite: GOES-R Advanced Baseline Imager (ABI) and derived features 

To derive and test a comprehensive set of features, five ABI channels (Channel 8: 6.2μm, 

10: 7.3μm, 11: 8.5μm, 14: 11.2 μm and 15: 12.3 μm) are used in this study. The brightness 

temperatures are parallax-adjusted (Kuligowski et al., 2016). These channels are selected based on 

their availability during both day and nighttime, and they have equivalents in other GEO sensors 

(e.g.  channels 5, 6, 7, 9 and 10 in METEOSAT Spinning Enhanced Visible InfraRed Imager), thus 

making this study more globally applicable to other sensors. The spatial resolution of the selected 

ABI channels is approximately 2 km at nadir. Several categories of features are derived from the 

ABI observations and from the NWP analyses (discussed in the coming section) and are listed in 

Table 1.  



 

Early work by Lovejoy and Austin (1979) showed that multi-spectral data can improve 

upon single-channel approaches to detect and quantify precipitation. Since then, several channels 

and combinations of channels have been used as additional features. The first category of features 

listed in Table 1 includes Brightness Temperatures (BTs) from the 5 channels. The water vapor 

(WV) absorption channels (6.2μm and 7.3μm) are sensitive to different levels of tropospheric WV. 

The 6.2μm (7.3μm) band is more sensitive to upper(lower)-level tropospheric WV, while the IR 

window channels (8.5μm, 11.2μm and 12.3μm) include the 11.2μm band that is one of the most 

important heritage channels. With greater absorption due to WV than the 11.2μm channel, the 8.5 

μm and 12.3 μm channels are referred to as “dirty” IR bands. 

The second category of features includes Brightness Temperature Differences (BTD; see 

Category 2 in Table 1). BTD is the most common way of combining information from two 

channels and has been significantly explored in the literature (Ba and Gruber, 2001; Kuligowski 

et al., 2016; Tjemkes et al., 1997; Upadhyaya and Ramsankaran, 2014). For example, the 

difference between IR and WV channels is used to separate overshooting cloud tops and cirrus 

clouds (Tjemkes et al., 1997) and BTD between two IR window channels is used to detect the 

cloud phase (Baum and Platnick, 2006; Giannakos and Feidas, 2013). 

The third category of features includes Differences of BTDs (D-BTD; Category 3 in Table 

1). Recently, So and Shin (2018) used a D-BTD feature; i.e., (8.5μm,-11.2μm) - (11.2μm- 12.3μm) 

to improve cloud phase detection. In this study we expand on this concept and all possible 

combinations of BTDs and D-BTDs are derived with new channels to explore their usefulness in 

detecting different precipitation processes. 

The fourth category of features are textures (Te; Category 4 in Table 1). Textures are the 

representations of spatial characteristics of a surface (Mohanaiah et al., 2013). The texture features 



 

derived from several GEO sensors channels are found to be useful at all stages of the precipitation 

retrieval process (Ba and Gruber, 2001; Kuligowski et al., 2016; Hong et al., 2004; Giannakos and 

Feidas, 2013; Tian et al., 1999). The usefulness of textures derived from all channels, difference 

indices (BTD) and difference of difference (D-BTD) has not yet been studied. The frequently used 

Grey Level Co-occurrence Matrix (GLCM; Haralick et al., 1973) for satellite images is used to 

derive texture features. GLCM extends texture measures beyond first order (such as mean and 

variance) by describing second-order features in the satellite image (Hall-Beyer, 2000). GLCM 

broadly estimates the joint probability density function of grey level pairs in an image (Rampun et 

al., 2013; Xian, 2010). In this study, grey levels are brightness temperatures, BTDs, and D-BTDs. 

Using the GLCM matrix across 5 x 5 ABI grids in all four orientations (0, 45, 90 and 135 degrees), 

five texture features are derived, namely: "mean", "variance", "entropy", "homogeneity", and 

"contrast".  Mean and variance are the descriptive statistics.  Entropy is a measure of disorder or 

randomness (information content). Contrast is a measure of local variations. Homogeneity is 

inversely proportional to contrast at constant energy (Xian, 2010). For details on the computation 

and exact definitions of these textures, the reader is referred to Hall-Beyer (2000). In this study, 

the R package ‘glcm’ (Zvoleff, 2020) is used to compute texture features.  

To account for the impact of varying viewing geometries on the spatial resolution of the 

ABI sensor at the surface, satellite zenith angle is also used as a feature (Ze; Category 5 in Table 

1).  The last category of features is derived from NWP model analyses, which give information 

about low-level environmental conditions and complement the ABI cloud-top information. More 

details of this category are discussed in Section 2.3. In total, 260 different features derived from 5 

channels and NWP 1 are explored in this study. 

 



 

 2.2. Reference: Precipitation types from Multi-Radar Multi-Sensor (MRMS) system 

The MRMS system provides a suite of severe weather and Quantitative Precipitation 

Estimates (QPE) products by integrating operational radar observations with rain gauge 

observations, atmospheric model analyses, and satellite data (Zhang et al., 2016). The products are 

available at 0.01° (~1 km) and 2 min resolution across the CONUS and southern Canada. As with 

satellite precipitation algorithms, the MRMS QPE products use different empirical relationships 

for different precipitation types. An automated surface precipitation classification is employed 

such that appropriate relationships between radar variables and precipitation rates are derived. 

There are seven categories of surface precipitation types: 1) warm stratiform rain, 2) cool 

stratiform rain, 3) convective rain, 4) tropical–stratiform rain mix, 5) tropical–convective rain mix, 

6) hail, and 7) snow. The description of each precipitation type can be referenced from Zhang et 

al. (2016). Kirstetter et al. (2012; 2014) set up a standardized reference for Global Precipitation 

Measurement (GPM) ground validation based on MRMS called GV-MRMS (Kirstetter et al. 

2018). This high quality GV-MRMS precipitation type product is aggregated to a temporal scale 

of 30 min to mitigate uncertainty due to temporal matching and the indirect link between cloud-

top observations and precipitation processes, and is used as the reference in this study.  

 

2.3. Numerical Weather Prediction Model based environmental features 

As mentioned earlier, the relationship between cloud top information from GEO sensors 

and surface precipitation is under-constrained (Kirstetter et al., 2018). Environmental variables 

from NWP models are used to complement the GEO observations and improve precipitation 

retrievals at the surface. To mitigate the overestimation (underestimation) of GEO retrieved 

rainfall in dry (wet) environments, Relative Humidity (RH) and Precipitable Water (PW) can be 



 

used (Ba and Gruber, 2001; Kuligowski et al., 2010; Vicente et al., 1998). Recently Min et al. 

(2018) demonstrated the relevance of other environmental features for precipitation detection and 

quantification. In this study, we use NWP information to classify different precipitation processes. 

Using NWP model data is consistent with the reference GV-MRMS precipitation type 

classification that uses NWP model-based environmental variables (Zhang et al., 2016). GV-

MRMS uses the Surface Temperature (ST) and Wet Bulb Temperature (WBT) to identify Snow, 

Cool Stratiform, and Tropical types.  The zero-hour analysis of the next-generation hourly updated 

assimilation and model forecast cycle Rapid Refresh (RAP) is used. RAP has been part of the 

NOAA National Centers for Environmental Prediction (NCEP) operational suite since May 2012 

(Benjamin et al., 2016). Following Grams et al. (2014), 19 features are derived from the RAP in 

addition to ST and WBT (Table 2). Surface-based convective available potential energy (CAPE) 

and lapse rates are indications of atmospheric stability which discriminate different updraft 

strengths in continental and maritime air masses. The vertical wind shear-based variables 

discriminate storm modes, such as weak shear for tropical systems and strong shear for more 

organized convection. Other variables provide atmospheric moisture content and degree of 

instability (for details the reader is referred to Grams et al. 2014). Note that radar reflectivity fields 

used in MRMS are assimilated in RAP and details on how assimilated reflectivity fields affect the 

training dataset can be found in Benjamin et al., (2016). 

 

2.4. Data characteristics and Pre-processing  

The study has been carried out across CONUS using the summer season (JJAS) of 2018. 

The spatial resolution of the analysis is the ABI native resolution. GV-MRMS products are 

spatially aggregated to match the resolution of ABI at the 30-min temporal scale. Conservative 



 

quality controls were applied to the resampled GV-MRMS data to derive the reference. Firstly, 

only the most trustworthy GV-MRMS data are identified with the high threshold for Radar Quality 

Index (RQI). A threshold of 98% is used for all precipitation types except for Hail. Given that hail 

has low occurrence and its detection is comparatively less impacted by radar sampling than other 

precipitation types, a lower threshold of 90% is used to get sufficient samples.  Secondly, to target 

homogeneous precipitation types in the matched ABI pixel, only resampled GV-MRMS pixels 

with at least 98% of the same precipitation type are selected with the exception of 90% for 

Convective and Tropical Convective Mix, 80% for Hail. The remaining “Mix” class pixels are not 

used. Because precipitation intermittency impacts the satellite signal (Upadhyaya et al., 2020), 

reference grids including partial precipitation are further removed, and only grids with percent rain 

greater than 95% and less than 5% are used for analysis.  

The size of the dataset and the distribution of precipitation types across months is 

summarized in Table 3 after applying the quality controls. Note that due to the low sample size of 

GV-MRMS-GV precipitation type “Snow” in summertime, it has not been considered in this study. 

The first 70% of data each month is used for training and the remaining 30% is used for testing. 

To avoid information leakage, training and testing cases are checked to be distinct and have 

uniform spatial and temporal representation. 

Initial experiments (not shown here) suggest that using imbalanced data for ML training 

leads to biased classification. Following the recommendations by Sun et al. (2009), balanced 

training data were generated using random sampling techniques. The balanced training and the 

entire validation sample sizes are shown in Table 3.    

 

2.5. Random Forest and evaluation statistics 



 

A random forest (RF) machine learning technique is used to classify precipitation types. 

RF is shown to be a robust approach for classification and has been applied to diverse applications 

including in precipitation science (Kuhnlein et al., 2014; Lazri and Ameur, 2018; Ouallouche et 

al., 2018). As the name suggests “Random Forest” is basically a “Forest” of decision trees building 

on two concepts of “Randomness” (Breiman, 2001). First, the training data is randomly sampled 

following the concept of “Bagging” (Breiman, 1996). Second, a subset of randomly selected 

features are used to build each decision tree. Díaz-Uriarte et al. (2006) summarizes several 

advantages of RF: (1) RFs produce unbiased estimates with low variance, (2) there is minimal 

overfitting; (3) RFs are effective in building non-linear relationships between the predictors and 

the predictand; and (4) there are only a few parameters that require tuning. 

One RF parameter is the number of bootstrap samples (n) to develop n number of trees. 

For each RF tree, m is the number of randomly selected features. We used 500 trees (n) with m = 

�(𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = 16 . A sensitivity analysis was performed to fine-tune these parameters, 

but did not show significant impact on the classification accuracy. Thus, for all experiments these 

two parameters were kept as indicated above. The ML framework scikit-learn in python 

(Pedregosa et al., 2011) is used for implementing random forest.  

To evaluate the model, a confusion matrix is built with the probability distributions of RF 

classified precipitation types. It is used along with individual type (classified precipitation type) 

accuracy and overall classification accuracy. The statistics derived from this matrix are briefly 

described below. More details can be found in Congalton (1991).  

Overall Accuracy: the proportion of total grids correctly classified irrespective of 

individual class accuracy. It is computed as the ratio (in percent) of the number of correctly 

classified data points to the total number of data points.  



 

Kappa Coefficient: the difference between the obtained agreement and the agreement 

expected by chance. A Kappa value of 0.85 indicates that there is 85% better agreement than by 

chance alone. Typical values for Kappa are -1 (no agreement), 0 (random agreement), and 1 

(perfect agreement). 

Class Accuracy: accuracy obtained for each class. It is calculated as the ratio of the number 

of correctly identified data points and the reference sample size for a given class expressed in 

percent. It is equivalent to probability of detection (POD) for each class. These values are the 

diagonal elements of the contingency matrix (Fig. 1) 

Additional details on the characteristics of RF and accuracy assessment are provided as 

required in Section 3 sections.  

 

3. Results and Discussion 

3.1. Model accuracy assessment  

In case of multi-class classification problems, RF inherently builds different forests/models 

for each class. As an output, RF computes the probability that any given sample belongs to each 

class (precipitation type), and the sample is assigned to the precipitation type associated with the 

highest probability. While the developed model is probabilistic in nature, in general it is used in a 

deterministic manner. In this study, we analyze results both from the deterministic and 

probabilistic perspectives.       

In terms of deterministic classification, Fig. 1 shows the normalized contingency matrix, 

along with other statistics reported in Section 2.5. It is normalized across all GV-MRMS 

precipitation types for ease of inter-comparison between different types. It is complemented by 

Fig. 2 showing each panel of the confusion matrix (i.e. each combination of RF classified and 



 

reference precipitation types) as two frequency curves of probabilities estimated by the RF model: 

the probability of the RF classified type (pink curve) and the probability of the GV-MRMS 

reference precipitation type (green curve). Note that diagonal cells have only one pink curve 

because the samples are correctly classified. The number at the top of each panel represents 

normalized contingency matrix elements (from Fig. 1) along with sample size. This graph indicates 

whether the probabilities of the RF classified type and reference class type are close (in other words 

they are misclassified with a small difference in probabilities), or otherwise. 

 

Regarding No-Precipitation, (used as NoPrecip in Figures 1 and 2) the RF model has an 

accuracy of 93% with 5% misclassified in warm stratiform (Figure 1). False alarms from other 

classes are low (Vertical column of No-Precipitation) with 2% of warm stratiform and 1% of 

convective events misclassified as No-Precipitation. From Fig. 2, one can observe that the 

estimated probability is very high i.e. curve peak close to 1, indicating that the rain and no-rain 

separation is robust with the RF model. Distributions associated with Misses (NoPrecip reference 

cases misclassified into other precipitation types) display low overlap between the reference 

distribution and the distribution associated with the other precipitation type. Note that the overlap 

is slightly higher in case of NoPrecip misclassified into warm precipitation, consistent with the 5% 

reported in Fig. 1.  The challenge will be to classify precipitating pixels to the appropriate class.  

Stratiform Types include Cool Stratiform (CoolStrat), Warm Stratiform (WarmStrat) and 

Tropical Stratiform/Mix (Trp_StratMix). From Figure 1, the CoolStrat type has accuracy of 97%, 

with 3% miss-classification in another stratiform category i.e. Warm Stratiform. This high 

accuracy can be attributed to the use of the Wet Bulb Temperature as a RF predictor feature while 

MRMS uses it also to identify CoolStrat. CoolStrat false alarms are also low, again with 1% of 



 

warm-stratiform pixels incorrectly classified as cool stratiform. Similar to No Precipitation, the 

robustness of the RF model is very high, i.e.: the probability curve is close to 1 (Figure 2). Warm 

stratiform has an accuracy of about 72% and is mostly misclassified as Tropical Stratiform Mix 

(11%) and Convective (10%) types. Warm Stratiform displays large false alarms also from the 

same types (around 20% from each). From Fig. 2, one can see that there are significant overlaps 

in the probability curves for Trp_StratMix and Convective in Warm Stratiform. This indicates that 

the lower probabilities estimated by the RF for the estimated and observed type are close so these 

types may generate misclassification.  A more detailed analysis on these effects will be reported 

in the companion article (Upadhyaya et al., 2021). The Tropical Stratiform/Mix (TSM) has an 

accuracy of 64%. It is misclassified as Tropical Convective/Mix (TCM;14%), in Warm stratiform 

(20%), and as Convective (4%).  False alarms in this class come from the same classes: TCM 

(around 26%), warm stratiform (11%) and Convective (9%).  

Convective Types include Hail, Convective, and Tropical Convective/Mix. The RF model 

has accuracy of 55% for TCM. A majority of misses are classified instead as TSM (26%) followed 

by in the Convective type (10%) as confirmed by the considerable overlap in RF estimated 

probability curves (Fig. 2). TCM has also significant false alarms from the same two types (around 

12% from each class). The Convective type has accuracy of only 47% and it is mis-classified as 

all other rain classes except Cool Stratiform and No-Precipitation. As expected, there is 

considerable overlap between the probability curves, confirming that the RF model is challenged 

in separating this class from others. In the companion article (Upadhyaya et al., 2021) the 

associated reasons are explored. Hail has a higher detection score (70%) than the other convective 

types. Most of its misclassification occurs in the convective class (26%) associated with large 

overlap in the probability curves. Most false alarms are also coming from the Convective type.  



 

The developed prognostic model shows skillful performance in identifying the 

occurrence/non-occurrence of precipitation (accuracy of 97%; Kappa coefficient of 0.9) and 

precipitation processes, with an overall classification accuracy of 76% and Kappa coefficient of 

0.56. The precipitation types No-Precipitation and Cool-Stratiform are classified with very high 

classification accuracy and probability (close to 1). The classification accuracy for types Warm 

Stratiform and Hail are relatively high, but the probability curves peak at values lower than 0.5 for 

the remaining types, indicating decreased robustness in the RF estimation for these types. As 

expected, frequently misclassified types (i.e., contingency matrix cells with large percentages) tend 

to be associated with larger amounts of overlap between the two probability curves than for the 

types that are misclassified less frequently. As indicated by stacked bars and highlighted by cells 

from the contingency matrix in Fig. 1, one can note a shifting loop in the misclassification trend 

from Convective to Tropical Convective/Mix to Tropical Stratiform/Mix to Warm Stratiform and 

back to Convective, and between Hail and Convective types. While these precipitation types reflect 

different precipitation processes, it is challenging to separate them deterministically from the 

GOES16 ABI observations. This motivates the use of a probabilistic rather than a deterministic 

classification to increase the information content used in the interpretation of identified 

precipitation types and in rate estimates.  

 

3.2. Case Studies 

Two randomly selected case events are evaluated visually and quantitatively by analyzing 

the contingency matrix in Figure 2. The RF classification results are compared with GV-MRMS 

and with SCaMPR (Kuligowski et al., 2010, 2016).   



 

The first event on 6 July 2018 at 0900 UTC is a case of a well-developed summer 

precipitation system in the southern Great Plains (Fig. 3). Figures 3a and 3d show the reference 

GV-MRMS precipitation types and the RF-estimated precipitation types, respectively. The RF 

probabilities estimated for each precipitation type are given as supplementary Figure S1, and the 

probability of the estimated dominant type at each pixel is shown in Figure 3f. Comparing Figs. 

3a and 3d, it can be observed that the RF model captures the occurrence of precipitation and the 

spatial shape of the precipitation event, yet there is noticeable overestimation of the raining area. 

Most of the precipitation false alarm area is classified as warm stratiform, which is consistent with 

the findings in Section 3.1. Sources of error causing this misclassification may include sub-pixel 

rainfall variability along the edges of rainy areas associated with the satellite sampling resolution 

(i.e., non-uniform beam filling (NUBF) as reported in Kirstetter et al., 2012, 2013 and Upadhyaya 

et al., 2020). Other sources of error can arise from the spatio-temporal matching between ABI and 

GV-MRMS, and possibly also internal MRMS procedures to avoid virga (Zhang et al., 2016). In 

contrast, SCaMPR misses large areas of precipitation (Figure 3c). 

Heavy precipitation regions (Figure 3b) such as the narrow stream in the north side and the 

small patch of heavy rain rates in the southwest that are classified as Convective and Hail types by 

GV-MRMS (Figure 3a) are well-captured by the RF model estimates (Figure 3d). However, the 

spatial extent of the Convective and Hail areas are overestimated by RF estimates relative to the 

GV-MRMS precipitation types.  

Note that precipitation types from GV-MRMS have their own sources of uncertainties and 

limitations, and might not optimally transfer to the satellite classification. Using the full 

information content of the RF retrievals through probabilities of precipitation types makes more 

sense than attempting to deterministically and exactly replicate the reference. From the dominant 



 

probability map (Fig. 3f) and Figure S1, and from the contingency matrix (Fig. 4), it can be 

observed that regions of misclassification are generally associated with lower dominant RF 

probability values. The estimated probabilities for both the misclassified and the correct reference 

types are less than 0.5, indicating that the RF estimates in these regions are uncertain. Such regions 

where the probability is less than 0.5 are highlighted as grey in Fig. 3e, and labelled as “uncertain” 

type. To account for the detection of precipitation, this uncertain type is further refined into 

Uncertain Rain (U:Rain) and Uncertain No-Rain (U:NoRain).  

Several different sets of rules can be developed to identify uncertain regions and types 

U:Rain and U:NoRain. Three of them are displayed and compared in Fig. 5:  

1. “Uncertain” can be defined such that the dominant estimated probability is less than 0.6, 

and this is subdivided into U:NoRain if the No-Precipitation type probability is in the range 

[0.4 - 0.6] or U:Rain if the No-Precipitation type probability is less than 0.4 (Fig. 5d); or 

2. “Uncertain” can be defined as when the first dominant estimated probability is less than 

twice as high as the second dominant probability; if either this first dominant or the second 

dominant type is No-Precipitation then it is classified as U:NoRain (Fig. 5e); or 

3. A threshold of 0.5 is used to define the dominant probability; to separate U:NoRain, the 

same rule as in Rule 2 is applied (Fig. 5f).  

By visually comparing the three maps, the Rule 3 map appears to be closest to GV-MRMS. 

It is evident that these sets of deterministic rules include some subjectivity and may not necessarily 

generalize to other places and times. Further, in GV-MRMS some regions at the edges of the rain 

field can be highlighted as “Uncertain” (Fig. 5c) because the dominant precipitation type is less 

than 80% in the space and time scale of aggregation. Note that the GV-MRMS mask associated 



 

with RQI is not visually used since it would remove significant precipitation areas (Pink patches 

in Fig. 5b) indicating there may be some uncertainty in GV-MRMS at lower RQI.  

The second randomly selected event occurred on 12 August 2018 at 2300 UTC (Fig. 6) 

across complex terrain of the western CONUS. It is characterized by scattered convection (also 

called air mass thunderstorms). As in the previous case the rain area is overestimated by the 

classification scheme. From Fig. 6c it can be noted that SCaMPR picks up the larger systems 

located in the west but misses several small scattered events, while the RF estimations correctly 

detect almost all scattered convective cells. From the contingency matrix and probability curves 

(Fig. 7), all precipitation types are estimated with low probability except no-precipitation. Some 

Hail regions and No-precipitation pixels are estimated with high probability, but large rain areas 

are estimated as uncertain types (Figs. 6e-f).  

RQI values are generally low across the western CONUS which indicates that the MRMS 

coverage is limited (Fig. 6a).  This case highlights the potential of GEO sensor observations for 

complementing the limited radar coverage across the Intermountain West.  

 

3.3. Feature Importance and optimal model selection 

As a diagnostic tool, the Random Forest model provides feature importance from training. 

The feature importance indicates how much each feature contributes to decreasing the mean Gini 

impurity (a measure of misclassification) in a forest (Pedregosa et al., 2011). This measure is 

normalized to sum to 1 and is ranked accordingly. The feature importance can be used to analyze 

which features are important for the classification and to select features in order to create more 

interpretable and less computationally expensive models if the application requires it.   



 

Figure 8 shows the first most important features contributing up to 65% of total feature 

importance.  Most of the RAP model-based environmental features have higher importance than 

satellite features, especially the temperature-related RAP features. Regarding satellite features, D-

BTD and textures derived from D-BTD have higher importance than other satellite features. The 

interested reader is referred to the companion article (Upadhyaya et al., 2021) of the article that 

details which features are contributing to each precipitation type classification.  

In this study, a total of 260 features are used, most of which may contribute little to the 

accuracy of classification. A feature reduction experiment is carried out to select a more 

parsimonious model; i.e., with the fewest possible features without significantly compromising the 

classification accuracy. Figure 9 illustrates the reduction classification accuracy for each 

precipitation type from gradually removing features in reverse order of importance (based on the 

cumulative feature importance values). The threshold used for cumulative feature importance 

along with the number of features are given in the x-axis in Fig. 9. From Fig. 9 and Fig. 1, recall 

that the accuracy of each precipitation type is different with Cool Stratiform and No-Precipitation 

with highest accuracy (>90%), followed by Warm Stratiform and Hail (>70%) , Tropical classes 

(<70%) and Convective (<50%).  

By removing the last 1% of features based on cumulative importance, the number of 

features is reduced from 260 to 247 without a significant decrease in classification accuracy for all 

precipitation types. Further removal of features noticeably reduced the accuracy in the convective 

precipitation type category (i.e., Hail, Convective and Tropical Convective/Mix), but the overall 

accuracy remains almost identical since these types represent a relatively small fraction of the total 

number of pixels. The overall accuracy statistic is most sensitive to the accuracy of No-

Precipitation and Warm stratiform types because their proportions are significantly higher than 



 

other types. This highlights that the individual class accuracies and contingency matrices should 

be used instead of the overall accuracy to assess classification models so that effects on individual 

classes are not missed. A drop-in accuracy can be noted when the number of features is reduced 

from 63 to 52 (i.e., the cumulative importance threshold is reduced from 65% to 60%). It indicates 

that important features for the Convective types are removed which are the last few features in Fig. 

8. These include D-BTDs, BTDs between WV and IR and single channel features such as T6.2, 

T6.2 Contrast, T11.2 mean, T12.3. The companion article (Upadhyaya et al., 2021) focuses 

specifically on identifying and interpreting important features for each precipitation type.  

 

4. Conclusions 

 Using the Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) system as a 

benchmark, a prognostic machine learning-based precipitation type classification model is 

developed by deriving a comprehensive set of features from ABI observations and numerical 

weather prediction data.  While the developed ML model using Random Forests (RF) is 

probabilistic in nature, in general precipitation type classifications are used in a deterministic 

manner. A detailed analysis comparing the deterministic and probabilistic perspectives is 

performed and leads to key highlights:  

1. The overall accuracy of RF classification is 75.9% and the Kappa coefficient is 0.56;  

2. Precipitation types No-Precipitation and Cool-Stratiform are classified with very high 

classification accuracy (>90%) and probability (close to 1);  

3. The classification accuracy for types Warm Stratiform and Hail are relatively high (>70%). 

However, the corresponding probability curves peak at values lower than 0.5, indicating 

decreased robustness in the RF estimation for these types;  



 

4. Challenges exist in identifying the Convective and Tropical types; 

5. There is a shifting loop in terms of misclassification from Convective to Tropical 

Convective/Mix to Tropical Stratiform/Mix to Warm Stratiform and back to Convective, 

and between Hail and Convective types. It brings into question the relevance of a 

deterministic classification, and motivates the use of a probabilistic classification to 

improve precipitation retrievals.  

6. A feature reduction experiment showed that the number of model predictors can be reduced 

from 260 to 63 (i.e., a model with the fewest possible features) without significantly 

compromising the classification accuracy.  

 

Overall, Part I of this article focused on prognostic modeling; i.e., the design, training, and 

assessment of a machine learning-based model for precipitation type and processes classification. 

Part II of the article focuses on the interpretation of the ML model with the objective to identify 

predictors relevant to different precipitation processes.  
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List of Tables: 

Table 1: Categories and number of features used in study 

 Category Feature Type Number of features  Example 

 1 BT (Brightness 
Temperature) 5 T6.2 

 2 BTD (Brightness 
Temperature Difference) 10 T6.2 – T7.3 

 3 D-BTD (Difference of 
BTDs) 25  (T6.2 – T7.3) – 

(T8.5 – T11.2) 

 4 Te (GLCM Textures) 5 Textures x (5 Category 1+ 10 
Category 2+ 25 Category 3) = 200 T6.2 mean 

 5 Ze (Satellite Zenith Angle) 1 Ze 

 6 Environmental features 
(NWP) 19 Details in Table 2 

*T6.2 is read as brightness temperature of ABI channel 6.2μm  



 

Table 2: RAP model-based environmental features used in study 

Sl No Environmental Variable 

1 Vertically integrated precipitable water (kg/m2) 

2 1000-700-hPa mean relative humidity (%) 

3 900-hPa relative humidity (%) 

4 850-hPa relative humidity (%) 

5 700-hPa relative humidity (%) 

6 500-hPa relative humidity (%) 

7 Surface equivalent potential temperature (K) 

8 Surface-based convective available potential energy (CAPE) (J/kg) 

9 Surface temperature (C) 

10 850-hPa temperature (K) 

11 700-hPa temperature (K) 

12 500-hPa temperature (K) 

13 Height of 0C isotherm (km) 

14 Wind shear from surface to 850 hPa (m/s) 

15 Wind shear from surface to 700 hPa (m/s) 

16 Wind shear from surface to 500 hPa (m/s) 

17 850-500-hPa lapse rate (K/km) 

18 850-700-hPa lapse rate (K/km) 

19 Wet Bulb Temperature 
* Note: The bold rows are features derived from RAP output and the other features are directly 

available from RAP output  



 

Table 3. Quality controlled sample size across MRMS-GV different precipitation types and 

months 

 Convec Cool_Strat Hail NoPrecip Trp_ConvMix Trp_StratMix WarmStart 
June 36,322 17,966 17,848 998,225 8,896 131,724 3,455,179 

July 33,426 109 13,586 1,242,849 17,118 124,527 2,895,582 

Aug 18,864 916 6,849 790,553 5,380 72,797 2,690,175 

Sept 26,137 112,548 2,491 1,087,205 36,472 554,228 5,682,992 

JJAS (Total) 114,749 131,539 40,774 4,118,832 67,866 883,276 14,723,928 

Train (70%) 87,919 98,677 31,612 2,966,493 51,842 651,764 10,694,772 

Test (30%) 26,830 32,862 9,162 1,152,339 16,024 231,512 4,029,156 

Balanced training Sample sized 
Balanced 

Train 31,612 31,612 31,612 31,612 31,612 31,612 31,612 

  



 

List of Figures: 

      

Figure 1. Normalized Contingency Matrix (in percent) as stacked bar chart with data table 

(lower panel) along with overall classification accuracy and Kappa coefficient. Blue highlighted 

cells are class accuracy values (Probability of detection) and orange highlighted cells are classes 

with large misclassification.  

  



 

 
Figure 2. Normalized contingency matrix (with sample size) and frequency distribution of 

probabilities estimated by random forest (RF) model in terms of probabilities estimated for the 

reference precipitation type (pink curves) and probabilities estimated for the considered 

precipitation type (green curves; deterministic manner). The ideal scenario is when two curves 

do not overlap. 

 



 

 
Figure 3: Case event on 26 July 2018 at 0900 UTC of (a) GV-MRMS precipitation types, (b) 

GV-MRMS precipitation rates, (c) SCaMPR precipitation rates, (d) estimated precipitation types, 

(e) estimated types highlighting uncertain regions, and (f) estimated probabilities of dominant 

precipitation types.  
Note: White strips in Panel a and b is result from resampling GV-MRMS to the ABI scale at the boundaries of UTM zones 

 



 

  
Figure 4. As in Figure 2 for the case event of July 26, 2018 at 0900 UTC using only quality 

control (QC) GV-MRMS observations. The last two columns indicate the total sample sizes in 

each GV-MRMS precipitation type with and without QC. 

  



 

 
Figure 5: Case event 26 July 2018 at 0900 UTC of (a) RF dominant estimated precipitation 

types, (b) GV-MRMS precipitation types, (c) GV-MRMS precipitation types highlighting less 

certain precipitation types areas (i.e. less than 80% occurrence), (d,e,f) uncertain Rain/No-Rain 

areas identified with three different set of rules applied on the RF estimated precipitation types.  



 

 
Figure 6: Case event 12 August 2018 at 2300 UTC of (a) GV-MRMS precipitation types, (b) 

GV-MRMS precipitation rates, (c) SCaMPR precipitation rates, (d) estimated precipitation types, 

(e) estimated types highlighting uncertain regions, and (f) estimated probabilities of dominant 

precipitation types.  



 

 
Figure 7. Contingency matrix and predicted probability graphs as in Figure 2 but for 12 August 

2018 2300 UTC calculated using only quality-controlled (QC) GV-MRMS observations. Last 

two columns are the total sample size in each GV-MRMS precipitation type with and without 

QC.  



 

 
Figure 8. Most important features (contributing to 65% of the total feature importance), and their 

feature importance by Random Forest model in decreasing order. The cumulative importance is 

indicated by the orange line.   



 

 
Figure 9. Feature selection/reduction based on RF feature importance 
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